
Lock-On Technolgy Circuitry Explaination

Version 990807 (0.90 not altered from email message form)

Andy Wolan (wacko@emulationzone.org)

Please note that in order to understand this documentation fully, you need to have some experience with digital electronics. Someone with a year of high school electronics skills under their belt should be able to follow along with no difficulty at all.

Before you begin reading this document, you might want to study the circuitry in question for an hour or two before continuing on in this documentation. The schematics for the Sonic and Knuckles cart can be found at ssrg.emulationzone.org. You might want to also print-out the schematics for the 74HC08, 74HC139 and 74HC74 IC chips. They can be found at the www.fairchildsemi.com And finally, if you don't have it already, you should definatly have a copy of the "Sega Genesis Hardware Internals" document. It can be downloaded from ssrg.emulationzone.org as well.

Introduction

Ok. I got the schematics for those 3 chips and I printed them out. (I actually did that yesterday :) I also wrote down what pin goes to what based on your drawing. From what I gather, the D-FF is not really used in a "finite state machine" as I first though. (Due to the existance of that quad AND gate.) It's just used to hold state on weather or not the Sonic 2 cart is in the expansion port or not when that ROM is disabled.

I follow everything down to the letter in your schematic, but I just want to be sure I know what is going on. Go through this document and see if you can find any "logic" mistacks. (I probably made plenty of speeling mistacks. :-) Please note, that this document infront of you is not the final draft, or close to it. I will be using this as the core of my rewrite.

Terminoligy (Just so you get lost)

S2&K - Sonic the Hedgehog 2 with SOnic & Knuckles

S3&K - Sonic the Hedgehog 3 with SOnic & Knuckles

Assumptions

The follow document assumes two "modes" of operation. In "S3&K mode", the S&K cart uses the data in the S3 cart, including it's SRAM modual! There is great evidence that the Sonic 3 and S&K were designed for each other, so I don't suspect anything fancy to happen here, which is why the "copy /b" technique worked without any modifications.

In "S2&K mode", however, the S2 "patch" is in charge. Weather or not it uses data in the S&K ROM is anyone guess. (It's not too important at this point.) In any event, the absence of this hidden ROM module made it impossible to run S2&K from an emulator.

The Hardware

74HC74 (Dual D-FF)

Only FF A is used in the chip. It is used to store a bit which specifies if Sonic 2 is in the expansion port or no.t (More info further down.)

74AC139 (Dual 1-of-4 Demux)

* The first MUX enables/disables the S&K ROM chip for address request below/above 2MEGs, respectivly.

* The second MUX enables/disables the ROM chip in the "Lock-On" port for address requests above/below 2 MEGs, respectively. It also enables/diables the Sonic 2 "patch" ROM for reads above/below 3 MEGs, respectivly.

74AC08 (Quad AND gates)

AND gates 2 and 3 (3rd and 4th ones on the chip) are diabled.

It works with 2nd demux of the 74AC139. It's function can be simplied as

_ _ _

O and O and O = !C_CE (to the cart in "Lock-On" port)

 0b 1b 2b

(All these chips do is "bank switch" between the ROMs based on the upper two address lines. Funny, eh?)

Note:

I put the quotes around disabled in the text above because it's not really permanitly disabled. What happens is, when the "chip enable" pin on the ROM chip goes high (it's an active low input), it will ignore all data requests to it's address pins and write nothing onto the data bus (Thus, it is disabled.) This would explain why it works on an emulator without a patch to the main program: the hardware performs the "bank switching" mechonisum while the software treats it as one contiguous segment of memory.

The Explaination

From what I gather, if an attempt is made to access data beyond the 2MByte limit of the S&K cart (thus setting A21 high), the S&K ROM is "disabled". Control is then passed to either the cart in the Lock-On module or to the "patch" ROM.

But in order to do that, the circuitry needs to record weather or not Sonic 2 is in the expansion port or not.

The program within the cart determine this information at startup by reading and comparing the serial numbers of the cart in the expansion port to that of the Sonic 1/2/3 carts.

If it determines that Sonic 2 locked-on to the expansion port, it sets the LSB on the data bus (D0) to a 1 and it somehow tells the CPU to generate a pulse on the (mysterious and feature unknown) Pin B31 of the Genesis cartrage port. (I think it's a user programable clock generator.<Put a logic probe on that pin, fire S&K up with Sonic 2 and see what happens!> This sets the D-FF to the "set" state. So in other words:

D-FF A (7474)

Q=	0: either S3&K or S&K mode. (Doesn't need to be set.. presets to 0 on start-up)

Q=	1: Sonic 2 mode

(Just one bit... very efficent!)

So, from here, the cart is obviously sending an address request above the 2MEG limit. If the Sonic 3 cart is in place and it's trying to address data in the 2MEG to 4MEG range, it merely enables the ROM in that cart. This is true for any other ROM with may reside within the S&K ROM.

If the Sonic 2 cart is in place and it's trying to address memeory above the 3MEG limit (ie, A21 and A20 are 1) then it disables the Sonic 2 cart and enables the S2 "patch" ROM. Otherwise, if an attempt is made to address data in the 2MEG to 3MEG range, the opposite is true. This assumes that Pin B31 _never_ sends another pulse. (But it could, since the emulators appear to ignore this instruction... maybe that is why KGen98 refuses to run?)

