+---+

| Nintendo Entertainment System Documentation |

| |

| Author: JDC (yoshi@parodius.com) |

| Revision: 1.00 |

+---+

+-------------------+

| Table of Contents |

+-------------------+

 1. Introduction

 A. Disclaimer

 B. Why?

 C. Mission

 D. Dedications

 E. "Thank You"s

 F. About the Author

 G. Contacting the Author

 2. Terminology and Hardware

 A. Terminology

 B. Hardware

 C. Notes

 3. CPU

 A. General Information

 B. Memory Map

 C. Interrupts

 D. Notes

 4. PPU

 A. General Information

 B. PPU Map

 C. Name Tables

 D. Pattern Tables

 E. Attribute Tables

 F. Palettes

 G. Mirroring

 H. Palette Mirroring

 I. Background Scrolling

 J. Sprites and SPR-RAM

 K. Horizontal and Vertical Blanking

 L. Mid-HBlank VRAM Writes

 M. Notes

 5. pAPU

 A. General Information

 B. Pulse Channels

 C. Triangle Channel

 D. Noise Channel

 E. DMC (PCM) Channel

 F. Notes

 6. Joypads and other devices

 A. General Information

 B. The Zapper

 C. Four-player devices

 D. Paddles

 E. Power Pad

 F. R.O.B. (Robot Operated Buddy)

 G. Signatures

 H. Notes

 7. Memory Mapping Hardware

 8. Registers

 9. File Formats

 A. iNES Format (.NES)

 B. Famicom Disk System (.DKA/.DKB/.500)

 C. dNESe Format

 D. fwNES Format

 E. Notes

 10. Programming the NES

 A. General Information

 B. CPU Notes

 C. PPU Notes

 D. Notes

 11. Emulation

 A. General Information

 B. CPU Notes

 C. PPU Notes

 D. APU Notes

 E. FAQ (Frequently Asked Questions)

 12. Reference Material

 A. CPU Information

 B. PPU Information

 C. APU Information

 D. Memory Mapper Information

 E. Mailing Lists

+-----------------+

| 1. Introduction |

+-----------------+

 A. Disclaimer

 I am in no way held responsible for the results of this information.

 This is public-domain information, and should not be used for commercial

 purposes. If you wish to use this document for commercial purposes,

 please contact me prior to development, so that I may discuss the outline

 of your project with you. I am not trying to hinder anyone financially:

 if you wish to do real Nintendo Entertainment System development, con-

 tacting either Nintendo of America or Nintendo Company, Ltd. would be

 wise. Their addresses are listed here:

 Nintendo of America Nintendo Company, Ltd.

 P.O. Box 957 60 Fukuine

 Redmond, WA 98073 Kamitakamatsu-cho,

 USA Higashiyama-ku,

 Koyoto 602, Japan

 All titles of cartridges and console systems are registered trademarks

 of their respective owners. (I just don't deem it necessary to list

 every single one by hand :-)).

 B. Why?

 At the time this document was created, there was only one piece of lit-

 erature covering the internals to the NES: Marat Fayzullin's documen-

 tation, otherwise known as "NES.DOC".

 While Fayzullin's documentation was lacking in many areas, it provided a

 strong base for the basics, and in itself truly stated how complex the

 little grey box was.

 I took the opportunity to expand on "NES.DOC," basing other people's

 findings, as well as my own, on experience; experience which has helped

 make this document what it has become today. The beginning stages of this

 document looked almost like a replica of Fayzullin's documentation, with

 both minor and severe changes. Marat Fayzullin himself later picked up a

 copy of my documentation, and later began referring people to it.

 Keep in mind, without Marat's "NES.DOC" document, I would have never had

 any incentive to write this one.

 C. Mission

 The goal of this document is simplistic: to provide accurate and (as

 oxymoronic as it sounds) up-to-date information regarding the Nintendo

 Entertainment System (and Famicom).

 D. Dedications

 I'd like to dedicate this document to Alex Krasivsky. Alex has been a

 great friend, and in my eyes, truly started the ball of emulation

 rolling. During the good times, and the bad times, Alex was there.

 Spasibo, Alex; umnyj Russki...

 E. "Thank You"s

 I'd like to take the time and thank all the people who helped make this

 document what it is today. I couldn't have done it without all of you.

 Acey - d0p@sofi.ah.dk

 Alex Krasivsky - bcat@lapkin.rosprint.ru

 Avatar Z - wwahlen@nfinity.com

 Bluefoot - danmcc@injersey.com

 CiXeL - <unknown>

 Chris Hickman - typhoonz@parodius.com

 D - slf05@cc.usu.edu

 Dan Boris - dan.boris@coat.com

 Donald Moore - moore@futureone.com

 FanWen Yang - yangfanw@ms4.hinet.net

 Fredrik Olsson - flubba@hem2.passagen.se

 Icer Addis - bldlust@maelstrom.net

 Jon Merkel - jpm5974@omega.uta.edu

 Kevin Horton - khorton@iquest.net

 Loopy - loopy@inquo.net

 Marat Fayzullin - fms@cs.umd.edu

 Mark Knibbs - mark_k@iname.com

 Matt Conte - itsbroke@classicgaming.com

 Matthew Richey - mr6v@andrew.cmu.edu

 MiKael Iushin - acc@tulatelecom.ru

 Mike Perry - mj-perry@uiuc.edu

 Morgan Johansson - MOJ@nerikes.se

 Neill Corlett - corlett@elwha.nrrc.ncsu.edu

 Pat Mccomack - splat@primenet.com

 Patrik Alexandersson - sp5alpa2@skolan.lysekil.se

 Paul Robson - AutismUK@aol.com

 Ryan Auge - rauge@hay.net

 Stumble - stumble@alpha.pulsar.net

 Tony Young - KBAAA@aol.com

 Vince Indriolo - indriolo@nm.picker.com

 \FireBug\ - lavos999@aol.com

 F. About the Author

 My name is Jeremy Chadwick, more commonly known as Y0SHi or JDC.

 My profession is in UNIX system/network/security administration. I have

 worked for a plethora of companies within the Bay Area of California

 USA, and am currently located in Corvallis Oregon USA, and am quite

 content with relocating to some other area within the west-coast of

 the United States (:-)).

 On top of the aforementioned, I'm also the founder of Parodius Net-

 working, more commonly referred to as "parodius.com". Our network has

 made a name for itself when it comes to providing console and emul-

 ation-oriented materials. We never intended for it to become so popular,

 but we are happy to be part of such a glorious and wonderful evolution.

 I personally have been "online" since mid-1990. Originally I began BBS-

 ing during my younger years, and got directed to the 'NET via a local

 friend of mine. I've stuck with it ever since.

 I've been programming computers since 1987, and consoles since July of

 1994. I released my famous SNES Documentation (SNDOC230.ZIP) a few days

 after Christmas of 1994. You can see more of my workings on my home

 page.

 G. Contacting the Author

 Email: yoshi@parodius.com Parodius Networking

 yoshi@skipnet.com 33811 Twin Maple Lane

 ICQ: #6279222 Corvallis, OR 97333

 IRC: Y0SHi or Y0SH (EFNet) USA

 Phone: +1 541-754-1094

+-----------------------------+

| 2. Terminology and Hardware |

+-----------------------------+

 A. Terminology

 CPU - Central Processing Unit: Self-explanitory. The NES uses a

 standard 6502 (NMOS).

 PPU - Picture Processing Unit: Used to control graphics, sprites,

 and other video-oriented features.

 pAPU - Pseuedo-Audio Processing Unit: Used for sound. The NES

 contains five (5) audio channels: four (4) analogue, and one

 (1) digital. There is no physical APU IC in the NES, as the

 system is analogue, not digital. All analogue circuitry is

 kept within the CPU.

 MMC - Multi-Memory Controller: Micro-controllers used in NES games

 to access memory beyond the 6502 64Kbyte boundary. They can

 also be used to access extra CHR-ROM, and may be used for

 "special effects" such as forcing and IRQ, and other things.

 VRAM - Video RAM: The RAM which is internal to the PPU. There is

 16kbits of VRAM installed in the NES.

 SPR-RAM - Sprite RAM: 256 bytes of RAM which is used for sprites. It is

 not part of VRAM nor ROM, though it's local to the PPU.

 PRG-ROM - Program ROM: The actual program-code area of memory. Also can

 be used to describe areas of code which are external to the

 actual code area and are swapped in via an MMC.

 PRG-RAM - Program RAM: Synonymous with PRG-ROM, except that it's RAM.

 CHR-ROM - Character ROM: The VRAM data which is kept external to the PPU,

 swapped in and out via an MMC, or "loaded" into VRAM during the

 power-on sequence.

 VROM - Synonymous with CHR-ROM.

 SRAM - Save RAM: RAM which is commonly used in RPGs such as "Cry-

 stalis," the Final Fantasy series, and "The Legend of Zelda."

 WRAM - Synonymous with SRAM.

 DMC - Delta Modulation Channel: The channel of the APU which handles

 digital data. Commonly referred to as the PCM (Pulse Code

 Modulation) channel.

 EX-RAM - Expansion RAM: This is the memory used within Nintendo's MMC5,

 allowing games to extend the capabilities of VRAM.

 B. Hardware

 NES - Nintendo Entertainment System: Self-explanitory.

 Dendy - Synonymous with the Famicom.

 Famicom - Synonymous with the NES, except it does not contain the fifth

 audio channel (DMC) nor any of it's registers.

 FDS - Famicom Disk System: Unit which sits atop the Famicom, support-

 ing the use of 3" double-sided floppy disks for games.

 C. Notes

 None.

+--------+

| 3. CPU |

+--------+

 A. General Information

 The NES uses a standard NMOS 6502 CPU, with modifications applied for

 audio. The NTSC NES runs at 1.7897725MHz, while the PAL version is at

 1.773447MHz.

 B. Memory Map

 +---------+-------+-------+-----------------------+

 | Address | Size | Flags | Description |

 +---------+-------+-------+-----------------------+

 | $0000 | $800 | | RAM |

 | $0800 | $800 | M | RAM |

 | $1000 | $800 | M | RAM |

 | $1800 | $800 | M | RAM |

 | $2000 | 8 | | Registers |

 | $2008 | $1FF8 | R | Registers |

 | $4000 | $17 | | Registers |

 | $4017 | $FE9 | U | |

 | $5000 | $1000 | | Expansion Modules |

 | $6000 | $2000 | | SRAM |

 | $8000 | $4000 | | PRG-ROM |

 | $C000 | $4000 | | PRG-ROM |

 +---------+-------+-------+-----------------------+

 Flag Legend: M = Mirror of $0000

 R = Mirror of $2000-$2008 every 8 bytes

 (e.g. $2008=$2000, $2018=$2000, etc.)

 U = Unknown

 C. Interrupts

 The 6502 has three (3) interrupts: IRQ/BRK, NMI, and RESET.

 Each interrupt has a vector. A vector is a 16-bit address which spec-

 ifies a location to "jump to" when the interrupt is triggered.

 IRQ/BRK is triggered when the 6502 executes the BRK instruction, or

 when an IRQ is forced via other means. The BRK opcode is rarely used

 for triggering this IRQ; most carts use it for their own use.

 RESET is triggered on power-up. The ROM is loaded into memory, and

 the 6502 jumps to the address specified in the RESET vector. No registers

 are modified, and no memory is cleared; these only occur during power-up.

 NMI stands for Non-Maskable Interrupt, and is generated by each refresh

 (VBlank), which occurs at different intervals depending upon the system

 used (PAL/NTSC).

 NMI is updated 60 times/sec. on NTSC consoles, and 50 times/sec on PAL.

 Interrupt latency on the 6502 is seven (7) cycles; this means it takes

 seven (7) cycles to move in and out of an interrupt.

 Most interrupts should return using the RTI instruction. Some NES carts

 do not use this method, such as Squaresoft's "Final Fantasy 1." These

 carts return from interrupts in a very odd fashion: by manipulating the

 stack by hand, and then doing an RTS. This is technically valid, but

 morally shunned.

 The following interrupts have the following vector-points in ROM:

 $FFFA = NMI

 $FFFC = RESET

 $FFFE = IRQ/BRK

 Interrupt priorities are as follows:

 Highest = RESET

 NMI

 Lowest = IRQ/BRK

 D. Notes

 Please note the two separate 16K PRG-ROM segments; they may be linear,

 but they play separate roles depending upon the size of the cartridge.

 Some games only hold one (1) 16K bank of PRG-ROM, which should be

 loaded into both $C000 and $8000.

 Most games load themselves into $8000, using 32K of PRG-ROM space. The

 first game to use this method is Super Mario Brothers. However, all

 games wit more than one (1) 16K bank of PRG-ROM load themselves into

 $8000 as well. These games use Memory Mappers to swap in and out PRG-ROM

 data, as well as CHR-ROM.

+--------+

| 4. PPU |

+--------+

 A. General Information

 None.

 B. Memory Map

 +---------+-------+-------+--------------------+

 | Address | Size | Flags | Description |

 +---------+-------+-------+--------------------+

 | $0000 | $1000 | C | Pattern Table #0 |

 | $1000 | $1000 | C | Pattern Table #1 |

 | $2000 | $3C0 | | Name Table #0 |

 | $23C0 | $40 | | Attribute Table #0 |

 | $2400 | $3C0 | M | Name Table #1 |

 | $27C0 | $40 | | Attribute Table #1 |

 | $2800 | $3C0 | M | Name Table #2 |

 | $2BC0 | $40 | | Attribute Table #2 |

 | $2C00 | $3C0 | M | Name Table #3 |

 | $2FC0 | $40 | | Attribute Table #3 |

 | $3000 | $F00 | U | |

 | $3F00 | $10 | | Image Palette #1 |

 | $3F10 | $10 | | Sprite Palette #1 |

 | $3F20 | $E0 | P | Palette Mirror |

 +---------+-------+-------+--------------------+

 Flag Legend: C = Possibly CHR-ROM

 M = Mirrored (see Subsection G)

 P = Mirrored (see Subsection H)

 U = Unused

 C. Name Tables

 The NES displays graphics using a matrix of "tiles"; this grid is called

 a Name Table. Tiles themselves are 8x8 pixels. The entire Name Table

 itself is 32x30 tiles (256x240 pixels). Keep in mind that the displayed

 resolution differs between NTSC and PAL units. NTSC units have an on-

 screen resolution of 256x224, while PAL units use 256x240.

 The Name Tables holds the tile number of the data kept in the Pattern

 Table (continue on).

 D. Pattern Tables

 The Pattern Table contains the actual 8x8 tiles which the Name Table

 refers to. It also holds the lower two (2) bits of the 4-bit colour

 matrix needed to access all 16 colours of the NES palette. Example:

 VRAM Contents of Colour

 Addr Pattern Table Result

 ------ --------------- --------

 $0000: %00010000 = $10 --+ ...1.... Periods are used to

 .. %00000000 = $00 | ..2.2... represent colour 0.

 .. %01000100 = $44 | .3...3.. Numbers represent

 .. %00000000 = $00 +-- Bit 0 2.....2. the actual palette

 .. %11111110 = $FE | 1111111. colour #.

 .. %00000000 = $00 | 2.....2.

 .. %10000010 = $82 | 3.....3.

 $0007: %00000000 = $00 --+

 $0008: %00000000 = $00 --+

 .. %00101000 = $28 |

 .. %01000100 = $44 |

 .. %10000010 = $82 +-- Bit 1

 .. %00000000 = $00 |

 .. %10000010 = $82 |

 .. %10000010 = $82 |

 $000F: %00000000 = $00 --+

 The result of the above Pattern Table is the character 'A', as shown

 in the "Colour Result" section in the upper right.

 E. Attribute Tables

 The Pattern Table contains the actual 8x8 tiles which the Name Table

 refers to. It also holds the lower two (2) of the 4-bit colour matrix

 Each byte in an Attribute Table represents a 4x4 group of tiles on the

 screen. There's multiple ways to describe what the function of one (1)

 byte in the Attribute Table does:

 * Holds the upper two (2) bits of a 32x32 pixel grid, per 16x16 pixels.

 * Holds the upper two (2) bits of sixteen (16) 8x8 tiles.

 * Holds the upper two (2) bits of four (4) 4x4 tile grids.

 It's quite confusing; two graphical diagrams may help:

 +------------+------------+

 | Square 0 | Square 1 | #0-F represents an 8x8 tile

 | #0 #1 | #4 #5 |

 | #2 #3 | #6 #7 | Square [x] represents four (4) 8x8 tiles

 +------------+------------+ (i.e. a 16x16 pixel grid)

 | Square 2 | Square 3 |

 | #8 #9 | #C #D |

 | #A #B | #E #F |

 +------------+------------+

 The actual format of the attribute byte is the following (and corris-

 ponds to the above example):

 Attribute Byte

 (Square #)

 33221100

 ||||||+--- Upper two (2) colour bits for Square 0 (Tiles #0,1,2,3)

 ||||+----- Upper two (2) colour bits for Square 1 (Tiles #4,5,6,7)

 ||+------- Upper two (2) colour bits for Square 2 (Tiles #8,9,A,B)

 +--------- Upper two (2) colour bits for Square 3 (Tiles #C,D,E,F)

 F. Palettes

 The NES has two 16-colour "palettes": the Image Palette and the Sprite

 Palette. These palettes are more of a "lookup table" than an actual

 palette, since they do not hold physical RGB values.

 Only the lower six (6) bits of each palette entry are used. The lower

 four (4) bits define the hue (chrominance), and the upper two (2) bits

 define the luminance (brightness). Saturation is based off of both the

 hue and luminance values.

 There are only twelve (12) possible hue values (1-12); any hue value

 greater then twelve (12) will result in the entry being black. A hue

 value of zero (0) results in no hue, meaning only the luminance value

 is used (resulting in a shade of grey).

 There are 52 possible colours, which includes two (2) possible shades of

 grey, black, and white.

 Specific mirroring (continue on) occurs between the two palettes. Due to

 the mirroring, each palette can only support 13 unique colour entries,

 making 26 the maximum number of colours on-screen.

 G. Mirroring

 Mirroring (otherwise known as shadowing) is the process of keeping two

 "copies" of a Name Table in memory. Imagine yourself in front of a

 mirror: anything you do, the mirror does. One cannot change the mirror

 without changing the original. The NES only contains enough VRAM to

 handle two (2) physical Name Tables, though this can be exterminated

 using the Four-Screen VRAM method (continue reading).

 Mirroring affects two (2) Name Tables simultaneously; you cannot switch

 Name Tables independently. Mirroring can also be disabled.

 The three (3) methods of mirroring: single-screen, "horizontal," and

 "vertical." Each term is used to describe which Name Tables get mirrored

 to what.

 Single-screen provides no mirroring, and only uses one (1) Name Table.

 Horizontal mirroring points Name Table #1 to #0, and #3 to #2. Vertical

 mirroring points Name Table #2 to #0, and #3 to #1. See below:

 Original Mirrored

 N. Table N. Table

 +------------+----------+----------+

 | Horizontal | #0 | #1 |

 | | #2 | #3 |

 +------------+----------+----------+

 | Vertical | #0 | #2 |

 | | #1 | #3 |

 +------------+----------+----------+

 Four-Screen VRAM is where the NES's VRAM is somehow extended, resulting

 in four (4) physical Name Tables.

 H. Palette Mirroring

 Mirroring also occurs within the Image Palette and the Sprite Palette,

 as well as between the two.

 Any data which is written to $3F00 is mirrored to $3F04, $3F08, $3F0C,

 $3F10, $3F14, $3F18, and $3F1C. Any data written to $3F04 is mirrored

 to $3F00, $3F08, $3F0C, etc..

 Colour #0 in both the Image and Sprite Palettes defines transparency.

 The entire Image and Sprite Palettes are both mirrored to other areas

 of VRAM as well; $3F20-3FFF are mirrors of both palettes, respectively.

 I. Background Scrolling

 The NES can scroll the background (pre-rendered Name Table + Pattern

 Table + Attribute Table) independently of the sprites which are over-

 layed on top of it. The background can be scrolled horizontally and

 vertically.

 Scrolling works as follows:

 Horizontal Scrolling Vertical Scrolling

 0 512

 +-----+-----+ +-----+ 0

 | | | | |

 | A | B | | A |

 | | | | |

 +-----+-----+ +-----+

 | |

 | B |

 | |

 +-----+ 480

 Name Table "A" is specified via Bits #0-1 in register $2000, and "B" is

 the Name Table after (due to mirroring, this is dynamic). This doesn't

 work for game which use Horizontal & Vertical scrolling simultaneously.

 The background will span across multiple Name Tables, as shown here:

 +---------------+---------------+

 | Name Table #2 | Name Table #3 |

 | ($2800) | ($2C00) |

 +---------------+---------------+

 | Name Table #0 | Name Table #1 |

 | ($2000) | ($2400) |

 +---------------+---------------+

 Due to the resolution of the screen (256x240), the only valid vertical

 scroll values which can be written to the Background Scroll Register

 ($2005) are ones between 0 and 239. If a value is >239, it's ignored.

 However, immediately after a VBlank occurs, the next write to $2005

 will control the horizontal scrolling values. See details on register

 $2005 for more information.

 To quote Pat Mccomack:

 "This stuff is used in smb1 (horizontal scrolling) but it's probably

 the same way with other games. Scrolling seems to be scanline based,

 ie during refresh the game can write different values to the scroll

 register (usually they do this when they detect the sprite 0 hit via

 reg $2002). The scrolling screen layout also can change. With horiz-

 ontal scrolling, the name table at the first screen (0-255) is the one

 specified in reg $2000, and the name table for the second screen

 (256-512) is the opposite of the first one, based on mirroring I

 guess."

 J. Sprites and SPR-RAM

 The NES supports 64 sprites, which can be either 8x8 or 8x16 pixels in

 size. The sprite data is kept within the Pattern Table region of VRAM.

 Sprite attributes such as flipping and priority, are stored in SPR-RAM,

 which is a separate 256 byte area of memory, independent of ROM and

 VRAM. The format of SPR-RAM is as follows:

 +-----------+-----------+-----+------------+

 | Sprite #0 | Sprite #1 | ... | Sprite #63 |

 +-+-------+-+-----------+-----+------------+

 | |

 +------++---------+--------------------------------------+

 + Byte | Bits | Description |

 +------+----------+--------------------------------------+

 | 0 | YYYYYYYY | Y Coordinate - 1. Consider the coor- |

 | | | dinate the upper-left corner of the |

 | | | sprite itself. |

 | 1 | IIIIIIII | Tile Index # |

 | 2 | vhp000cc | Attributes |

 | | | v = Vertical Flip (1=Flip) |

 | | | h = Horizontal Flip (1=Flip) |

 | | | p = Background Priority |

 | | | 0 = In front |

 | | | 1 = Behind |

 | | | c = Upper two (2) bits of colour |

 | 3 | XXXXXXXX | X Coordinate (upper-left corner) |

 +------+----------+--------------------------------------+

 The Tile Index # is obtained the same way as Name Table data.

 Sprites which are 8x16 in size function a little bit differently. A

 8x16 sprite which is even-numbered uses the Pattern Table at $0000 in

 VRAM. If the Sprite Tile # is odd, the sprite uses $1000 in VRAM.

 PLEASE NOTE: Register $2000 has no effect on 8x16 sprites.

 If a sprite has the the Sprite Priority bit set and has a higher priority

 than a sprite at the same location, then the background will be in front

 of both sprites. Konami's "Castlevania" cart uses this feature.

 Only eight (8) sprites can be displayed per scan-line. Each entry in

 SPR-RAM is checked to see if it's in a horizontal range with the other

 sprites. Remember, this is done on a per scan-line basis, not on a per

 sprite basis (e.g. done 256 times, not 256/8 or 256/16 times).

 K. Horizontal and Vertical Blanking

 The NES, like every console, has a refresh: where the display device

 relocates the electron gun to display visible data. The most common

 display device is a television set. The refresh occurs 60 times a

 second on an NTSC device, and 50 on a PAL device.

 The gun itself draws pixels left to right: this process results in

 one (1) horizontal scanline being drawn. After the gun is done drawing

 the entire scanline, the gun must return to the left side of the

 display device, becoming ready to draw the next scanline. The process

 of the gun returning to the left side of the display is the Horizontal

 Blank period (HBlank).

 When the gun has completed drawing all of the scanlines, it must return

 to the top of the display device; the time it takes for the gun to

 re-position itself atop the device is called the Vertical Blank period

 (VBlank).

 As you can see from the below diagram, the gun more or less works in

 a zig-zag pattern until VBlank is reached, then the process repeats:

 +-----------+

 +--->|***********| <-- Scanline 0

 | | ___---~~~ | <-- HBlank

 V |***********| <-- Scanline 1

 B | ___---~~~ | <-- HBlank

 l | ... | ...

 a | ... | ...

 n |***********| <-- Scanline 239

 k +-----+-----+

 | |

 +--VBlank--+

 An NTSC NES has the following refresh and screen layout:

 +--------+ 0 ----+

 | | |

 | | |

 | Screen | +-- (0-239) 256x240 on-screen results

 | | |

 | | |

 +--------+ 240 --+

 | ?? | +-- (240-242) Unknown usage

 +--------+ 243 --+

 | | |

 | VBlank | +-- (243-262) VBlank

 | | |

 +--------+ 262 --+

 The Vertical Blank (VBlank) flag is contained in Bit #7 of $2002. It

 indicates whether PPU is in VBlank or not. A program can reset Bit #7

 by reading $2002.

 The Hit Flag is contained in Bit #6 of $2002. This bit is set to 1 when

 the PPU starts refreshing the first scanline where sprite #0 is located.

 For example, if sprite #0's Y coordinate is 34, the Hit flag will be set

 in scanline 34. The Hit Flag is set to 0 when a VBlank occurs.

 L. Mid-HBlank VRAM Writes

 VRAM writes can be executed during mid-HBlank. The PPU will continue

 to update the screen at the current scanline; the data written will

 be applied to a different scanline, and also affects the horizontal

 scroll value. The format of the data written during mid-HBlank is:

 BYTE 1: 00AA??vv

 BYTE 2: vvvHHHHH

 Horizontal Position = H*8

 Vertical Position = 0

 Scanline = (v*8)+AA

 M. Notes

 VRAM is addressed via a 14-bit address, and will wrap on it's 16K

 boundary (e.g. accesses to $4001 will read from $0001).

 The PPU will auto-increment the VRAM address by 1 or 32 (based on

 Bit #2 of $2000) after accessing $2007.

 Information provided in the latter section of Subsection K may be

 incorrect.

+---------+

| 5. pAPU |

+---------+

 A. General Information

 The NES uses a four (4) channel analogue synthesis chip to do it's

 audio, and also has a fifth (5) channel for digital sound. Unlike the

 SNES and it's SPC700, there is no IC APU on the NES: hence the name

 'pAPU' (pseudo-APU). Analogue synthesis is achieved via oscillators,

 resistors, transistors, and capacitors. Voltage is sent through these,

 and certain aspects of each sound channel are controlled using registers.

 The first two (2) channels are pulse (square), and the third (3) being

 a triangle. The fourth (4) channel is a noise channel.

 The fifth (5) channel is the DMC (PCM) channel.

 B. Pulse Channels

 No information is currently available.

 C. Triangle Channel

 The triangle channel's duty cycle is always 50/50.

 D. Noise Channel

 No information is currently available.

 E. DMC (PCM) Channel

 The DMC channel, commonly referred to as the 'PCM' channel, uses two

 methods of digital audio playback: DMA and RAW.

 The DMA method is most commonly used. The steps for playback are as

 follows:

 1) Set $4012 (DMC Address Register) to the 64-byte aligned offset

 within PRG-ROM $C000-FFFF. For instance, if $8E is written here,

 the sample data will be loaded from ($8E*64)+C000, or $E380.

 2) Set $4013 (DMC Length Register) to the length of the sample data.

 The sample length is defined as (16*x)+1, where x is the value

 written.

 3) Set $4010 (DMC Frequency Register) to whatever 4-bit frequency

 you desire.

 4) Set Bit #4 of $4015 (Channel Control) to 1, enabling the DMC

 channel.

 The sample data used for the DMA method is 1-bit unsigned data. The

 actual format of the data is currently unknown, as is the latency of

 playback.

 The RAW method is used in carts such as Tengen's "Gauntlet 2," for

 8-bit "high-quality" speech. The steps for playback are as follows:

 1) Write the 8-bit value to $4011 (DMC Volume Register).

 F. Notes

 The sound constant on the NES is 3579545/32, or 111860.78.

+------------------------------+

| 6. Joypads and other devices |

+------------------------------+

 A. General Information

 The NES directly supports up to two (2) joypads, or one (1) joypad and

 one (1) Zapper (light gun). It can also support four-player devices

 which allow for the use of up to four (4) joypads simultaneously.

 Both joypads are accessed via registers $4016 and $4017. Each joypad is

 reset via a strobing-method: writing 1, then 0 to either register. From

 there on, the joypad's button status will be returned in a single-bit

 stream. Multiple reads need to be made to read all the information

 about the controller.

 1 = A 9 = Ignored 17 = +--+

 2 = B 10 = Ignored 18 = +-- Signature

 3 = SELECT 11 = Ignored 19 = |

 4 = START 12 = Ignored 20 = +--+

 5 = UP 13 = Ignored 21 = 0

 6 = DOWN 14 = Ignored 22 = 0

 7 = LEFT 15 = Ignored 23 = 0

 8 = RIGHT 16 = Ignored 24 = 0

 See Subsection G for information about Signatures.

 B. The Zapper

 No information is currently available.

 C. Four-player devices

 Some NES games allow the use of a four-player adapter, extending the

 number of usable joypads from two (2) to four (4). Carts which use

 the quad-player device are Tengen's "Gauntlet II," and Nintendo's

 "RC Pro Am 2."

 All four (4) controllers read their status-bits from Bit #0 (as

 Subsection A states) of $4016 or $4017.

 For register $4016, reads #1-8 control joypad #1, and reads #9-16

 control joypad #3. For $4017, it is respective for joypad #2 and #4.

 The following is a list of read #s and their results.

 1 = A 9 = A 17 = +--+

 2 = B 10 = B 18 = +-- Signature

 3 = SELECT 11 = SELECT 19 = |

 4 = START 12 = START 20 = +--+

 5 = UP 13 = UP 21 = 0

 6 = DOWN 14 = DOWN 22 = 0

 7 = LEFT 15 = LEFT 23 = 0

 8 = RIGHT 16 = RIGHT 24 = 0

 See Subsection G for information about Signatures.

 D. Paddles

 Taito's "Arkanoid" uses a paddle as it's primary controller.

 The paddle position is read via Bit #1 of $4017; the read data is inver-

 ted (0=1, 1=0). The first value read is the MSB, and the 8th value read

 is (obviously) the LSB. Valid value ranges are 98 to 242, where 98 rep-

 resents the paddle being turned completely counter-clockwise.

 For example, if %01101011 is read, the value would be NOT'd, making

 %10010100 which is 146.

 The paddle also contains one button, which is read via Bit #1 of $4016.

 A value of 1 defines the button being pressed.

 E. Power Pad

 No information is currently available.

 F. R.O.B. (Robot Operated Buddy)

 No information is currently available.

 G. Signatures

 A signature allows the programmer to detect if a device is connected

 to one of the four (4) ports or not, and if so, what type of device it

 is. Valid/known signatures are:

 %0000 = Disconnected

 %0001 = Joypad ($4016 only)

 %0010 = Joypad ($4017 only)

 H. Notes

 None.

+----------------------------+

| 7. Memory Mapping Hardware |

+----------------------------+

 Due to the large number of mappers used (over 64), the "MMC" section

 which was once fluid in v0.53 of this document, has now been removed.

 All is not lost, as another document by \FireBug\ of Vertigo 2099 con-

 tains accurate information about nearly every mapper in existence. You

 can retrieve a copy via one of the following URLs:

 http://free.prohosting.com/~nintendo/mappers.nfo

 Please note I take no responsibility for the information contained in the

 aforementioned document. Contact lavos999@aol.com for more information.

+--------------+

| 8. Registers |

+--------------+

 Programmers communicate with the PPU and pAPU via registers, which are

 nothing more than pre-set memory locations which allow the coder to make

 changes to the NES. Without registers, programs wouldn't work: period.

 Each register is a 16-bit address. Each register has a statistics field

 in parentheses located immediately after its description. The legend:

 R = Readable W = Writable

 2 = Double-write register ? = Unknown or possibly incorrect

 Underneath the description is a binary representation of each bit which

 is part of the register itself. The legend:

 0 = Always zero 1 = Always 1

 - = Not used ? = Unknown

 +---------+--+

 | Address | Description |

 +---------+--+

 | $2000 | PPU Control Register #1 (W) |

 | | %vMsbpiNN |

 | | v = Execute NMI on VBlank |

 | | 1 = Enabled |

 | | M = PPU Selection (unused) |

 | | 0 = Master |

 | | 1 = Slave |

 | | s = Sprite Size |

 | | 0 = 8x8 |

 | | 1 = 8x16 |

 | | b = Background Pattern Table Address |

 | | 0 = $0000 (VRAM) |

 | | 1 = $1000 (VRAM) |

 | | p = Sprite Pattern Table Address |

 | | 0 = $0000 (VRAM) |

 | | 1 = $1000 (VRAM) |

 | | i = PPU Address Increment |

 | | 0 = Increment by 1 |

 | | 1 = Increment by 32 |

 | | NN = Name Table Address |

 | | 00 = $2000 (VRAM) |

 | | 01 = $2400 (VRAM) |

 | | 10 = $2800 (VRAM) |

 | | 11 = $2C00 (VRAM) |

 | | |

 | | NOTE: Bit #6 (M) has no use, as there is only one (1) |

 | | PPU installed in all forms of the NES and Famicom. |

 +---------+--+

 | $2001 | PPU Control Register #2 (W) |

 | | %fffpcsit |

 | | fff = Full Background Colour |

 | | 000 = Black |

 | | 001 = Red |

 | | 010 = Blue |

 | | 100 = Green |

 | | p = Sprite Visibility |

 | | 1 = Display |

 | | c = Background Visibility |

 | | 1 = Display |

 | | s = Sprite Clipping |

 | | 0 = Sprites not displayed in left |

 | | 8-pixel column |

 | | 1 = No clipping |

 | | i = Background Clipping |

 | | 0 = Background not displayed in |

 | | left 8-pixel column |

 | | 1 = No clipping |

 | | t = Display Type |

 | | 0 = Colour display |

 | | 1 = Mono-type (B&W) display |

 +---------+--+

 | $2002 | PPU Status Register (R) |

 | | %vhsw---- |

 | | v = VBlank Occurance |

 | | 1 = In VBlank |

 | | h = Sprite #0 Occurance |

 | | 1 = VBlank has hit Sprite #0 |

 | | s = Scanline Sprite Count |

 | | 0 = Less than 8 sprites on the |

 | | current scanline |

 | | 1 = More than 8 sprites on the |

 | | current scanline |

 | | w = VRAM Write Flag |

 | | 1 = Writes to VRAM are ignored |

 | | |

 | | NOTE: If read during HBlank and Bit #7 of $2000 is set |

 | | to 0, then switch to Name Table #0. |

 | | NOTE: After a read occurs, $2005 is reset, hence the |

 | | next write to $2005 will be Horizontal. |

 | | NOTE: Bit #6 (h) is set to 0 after each VBlank. |

 | | NOTE: Bit #6 (h) is not set until the first actual non- |

 | | transparent pixel is drawn. Hence, if you have a |

 | | 8x8 sprite which has all pixels transparent except |

 | | for pixel #4 (horizontally), Bit #6 will be set |

 | | after the 4th pixel is found & drawn. |

 | | NOTE: Bit #7 (v) is set to 0 after read occurs. |

 | +--+

 | | PPU Status Register (W) |

 | | %???????? |

 +---------+--+

 | $2003 | SPR-RAM Address Register (W) |

 | | |

 | | Specifies the 8-bit address in SPR-RAM to access via |

 | | $2004. |

 +---------+--+

 | $2004 | SPR-RAM I/O Register (RW) |

 | | |

 | | Used to R/W 8-bit data to/from SPR-RAM. |

 +---------+--+

 | $2005 | Background Scroll Register (W2) |

 | | |

 | | Used to pan/scroll the pre-rendered screen (excluding |

 | | sprites) horizontally and vertically. The data is |

 | | written in the following mannar: |

 | | |

 | | BYTE 1: Horizontal |

 | | BYTE 2: Vertical |

 +---------+--+

 | $2006 | VRAM Address Register (W2) |

 | | |

 | | Specifies the 16-bit address in VRAM to access via |

 | | $2007. The data is written in the following mannar: |

 | | |

 | | BYTE 1: Upper 8-bit portion of effective address |

 | | BYTE 2: Lower 8-bit portion of effective address |

 +---------+--+

 | $2007 | VRAM I/O Register (RW) |

 | | |

 | | Used to R/W 8-bit data to/from VRAM. |

 +---------+--+

 | $4000 | pAPU Pulse #1 Control Register #1 (W) |

 | | %CCwessss |

 | | CC = Duty Cycle (Positive vs. Negative) |

 | | 00 = 87.5% |

 | | 01 = 75.0% |

 | | 10 = 50.0% |

 | | 11 = 25.0% |

 | | w = Waveform Hold (e.g. Looping) |

 | | 1 = On |

 | | e = Envelope Select |

 | | 0 = Varied |

 | | 1 = Fixed |

 | | s = Playback Rate |

 +---------+--+

 | $4001 | pAPU Pulse #1 Control Register #2 (W) |

 | | %fsssMrrr |

 | | f = Frequency Sweep |

 | | 0 = Off (Bits #0-6 ignored) |

 | | 1 = On (Bits #0-6 respected) |

 | | sss = Frequency Change Speed |

 | | M = Frequency Method |

 | | 0 = High --> Low |

 | | 1 = Low --> High |

 | | rrr = Frequency Range (0=Min, 7=Max) |

 +---------+--+

 | $4002 | pAPU Pulse #1 Frequency Register #1 (W) |

 | | %ffffffff |

 | | f = Frequency (lower 8-bits) |

 | | |

 | | NOTE: The entire frequency is 11-bits in size; be aware |

 | | that the upper 3-bits are in $4003. |

 +---------+--+

 | $4003 | pAPU Pulse #1 Frequency Register #2 (W) |

 | | %tttttfff |

 | | t = Active Time Length |

 | | fff = Frequency (upper 3-bits) |

 +---------+--+

 | $4004 | pAPU Pulse #2 Control Register #1 (W) |

 | | %CCwessss |

 | | CC = Duty Cycle (Positive vs. Negative) |

 | | 00 = 87.5% |

 | | 01 = 75.0% |

 | | 10 = 50.0% |

 | | 11 = 25.0% |

 | | w = Waveform Hold (e.g. Looping) |

 | | 1 = On |

 | | e = Envelope Select |

 | | 0 = Varied |

 | | 1 = Fixed |

 | | s = Playback Rate |

 +---------+--+

 | $4005 | pAPU Pulse #2 Control Register #2 (W) |

 | | %fsssMrrr |

 | | f = Frequency Sweep |

 | | 0 = Off (Bits #0-6 ignored) |

 | | 1 = On (Bits #0-6 respected) |

 | | sss = Frequency Change Speed |

 | | M = Frequency Method |

 | | 0 = High --> Low |

 | | 1 = Low --> High |

 | | rrr = Frequency Range (0=Min, 7=Max) |

 +---------+--+

 | $4006 | pAPU Pulse #2 Frequency Register #1 (W) |

 | | %ffffffff |

 | | f = Frequency (lower 8-bits) |

 | | |

 | | NOTE: The entire frequency is 11-bits in size; be aware |

 | | that the upper 3-bits are in $4007. |

 +---------+--+

 | $4007 | pAPU Pulse #2 Frequency Register #2 (W) |

 | | %tttttfff |

 | | t = Active Time Length |

 | | fff = Frequency (upper 3-bits) |

 +---------+--+

 | $4008 | pAPU Triangle Control Register #1 (?) |

 | | %???????? |

 +---------+--+

 | $4009 | pAPU Triangle Control Register #2 (?) |

 | | %???????? |

 +---------+--+

 | $400A | pAPU Triangle Frequency Register #1 (W) |

 | | %ffffffff |

 | | f = Frequency (lower 8-bits) |

 | | |

 | | NOTE: The entire frequency is 11-bits in size; be aware |

 | | that the upper 3-bits are in $400B. |

 +---------+--+

 | $400B | pAPU Triangle Frequency Register #2 (W) |

 | | %tttttfff |

 | | t = Active Time Length |

 | | fff = Frequency (upper 3-bits) |

 +---------+--+

 | $400C | pAPU Noise Control Register #1 (W) |

 | | %???????? |

 +---------+--+

 | $400D | pAPU Noise Control Register #2 (W) |

 | | %???????? |

 +---------+--+

 | $400E | pAPU Noise Frequency Register #1 (W) |

 | | %ffffffff |

 | | f = Frequency (lower 8-bits) |

 | | |

 | | NOTE: The entire frequency is 11-bits in size; be aware |

 | | that the upper 3-bits are in $400F. |

 +---------+--+

 | $400F | pAPU Noise Frequency Register #2 (W) |

 | | %tttttfff |

 | | t = Active Time Length |

 | | fff = Frequency (upper 3-bits) |

 +---------+--+

 | $4010 | pAPU DMC Control Register (W) |

 | | %i???ssss |

 | | i = Generate IRQ when finished |

 | | 1 = Enabled |

 | | s = Frequency |

 +---------+--+

 | $4011 | pAPU DMC Volume Register (W) |

 | | |

 | | Defines the 8-bit volume of the DMC channel. Can also |

 | | be used for RAW data playback. |

 +---------+--+

 | $4012 | pAPU DMC Address Register (W) |

 | | |

 | | Defines the 64-byte aligned offset within PRG-ROM |

 | | $C000-FFFF for the sample data. ($4012*64)+$C000 is the |

 | | effective address. |

 +---------+--+

 | $4013 | pAPU DMC Data Length Register (W) |

 | | |

 | | Defines the length of the sample data. ($4013*16)+1 is |

 | | the actual calculated length. |

 +---------+--+

 | $4014 | SPR-RAM DMA Register (W) |

 | | |

 | | Transfers 256 bytes of memory into SPR-RAM. The address |

 | | read from is $100*N, where N is the value written. |

 +---------+--+

 | $4015 | pAPU Status Register (R) |

 | | %0000000p |

 | | p = Status |

 | | 1 = pAPU in use |

 | +--+

 | | pAPU Channel Control (W) |

 | | %---edcba |

 | | a = Pulse #1 (1=Enabled) |

 | | b = Pulse #2 (1=Enabled) |

 | | c = Triangle (1=Enabled) |

 | | d = Noise (1=Enabled) |

 | | e = DMC (1=Enabled) |

 +---------+--+

 | $4016 | Joypad #1 (R) |

 | | %???STeed |

 | | S = Zapper Sprite Detection |

 | | 1 = Sprite in front of cross-hair |

 | | T = Zapper Trigger |

 | | 0 = Pressed |

 | | ee = Expansion Port Data |

 | | d = Joypad Data |

 | +--+

 | | Joypad #1 (W) |

 | | %?????ees |

 | | ee = Expansion Port Data |

 | | s = Joypad Strobe |

 | | 0 = Clear joypad strobe |

 | | 1 = Reset joypad strobe |

 +---------+--+

 | $4017 | Joypad #2 (R) |

 | | %???STeed |

 | | S = Zapper Sprite Detection |

 | | 1 = Sprite in front of cross-hair |

 | | T = Zapper Trigger |

 | | 0 = Pressed |

 | | ee = Expansion Port Data |

 | | d = Joypad Data |

 | +--+

 | | Joypad #2 (W) |

 | | %???????? |

 +---------+--+

+-----------------+

| 9. File Formats |

+-----------------+

 A. iNES Format (.NES)

 +--------+------+--+

 | Offset | Size | Content(s) |

 +--------+------+--+

 | 0 | 3 | 'NES' |

 | 3 | 1 | $1A |

 | 4 | 1 | 16K PRG-ROM page count |

 | 5 | 1 | 8K CHR-ROM page count |

 | 6 | 1 | ROM Control Byte #1 |

 | | | %####vTsM |

 | | | | ||||+- 0=Horizontal Mirroring |

 | | | | |||| 1=Vertical Mirroring |

 | | | | |||+-- 1=SRAM enabled |

 | | | | ||+--- 1=512-byte trainer present |

 | | | | |+---- 1=Four-screen VRAM layout |

 | | | | | |

 | | | +--+----- Mapper # (lower 4-bits) |

 | 7 | 1 | ROM Control Byte #2 |

 | | | %####0000 |

 | | | | | |

 | | | +--+----- Mapper # (upper 4-bits) |

 | 8-15 | 8 | $00 |

 | 16-.. | | Actual 16K PRG-ROM pages (in linear |

 | ... | | order). If a trainer exists, it precedes |

 | ... | | the first PRG-ROM bank. |

 | ..-EOF | | CHR-ROM pages (in ascending order). |

 +--------+------+--+

 B. Famicom Disk System (.DKA/.DKB/.500)

 +--------+------+---------------------------------------+

 | Offset | Size | Content(s) |

 +--------+------+---------------------------------------+

 | [IMAGE HEADER] |

 | 0 | 1 | <Unknown> |

 | 1 | 3 | Disk ID |

 | 6 | 1 | Disk # |

 | 38 | 1 | Disk # (???) |

 | 63 | 1 | Amount of data blocks |

 | |

 | [DATA BLOCK HEADER] |

 | 64 | 1 | $03 |

 | 65 | 1 | Block # |

 | 66 | 1 | <Unknown> |

 | 67 | 8 | Name |

 | 75 | 2 | Destination |

 | 77 | 2 | Size of data |

 | 79 | 1 | Data Type |

 | | | $00 = PRG-RAM |

 | | | $01 = CHR-ROM |

 | | | $02 = 6-bit audio data |

 | 79-.. | | Data |

 | ... | | |

 | ... | | Repeat loading DATA BLOCKS HEADERS as |

 | ... | | shown above; continue loading until |

 | ..-EOF | | EOF is reached. |

 +--------+------+---------------------------------------+

 C. dNESe Format

 Information unavailable. Contact Ryan Auge for details.

 D. fwNES Format

 Information unavailable.

 E. Notes

 The Famicom Disk System format bases disk sides on the file extension;

 .DKA being Side-A, and .DKB being Side-B. Each side of a disk is 64K

 in size, hence both files should be exactly 65536 bytes in size.

+-------------------------+

| 10. Programming the NES |

+-------------------------+

 A. General Information

 None.

 B. CPU Notes

 None. See Section 11, Subsection B for more possible information.

 C. PPU Notes

 Reading and writing to VRAM consist of a tri or quad-step process

 (Step #1 being optional, based on if you wish to do mid-HBlank updates

 or not):

 Writing to VRAM Reading from VRAM

 --------------- -----------------

 1) Wait for VBlank 1) Wait for VBlank

 2) Write upper VRAM address 2) Write upper VRAM address

 byte into $2006 byte into $2006

 3) Write lower VRAM address 3) Write lower VRAM address

 byte into $2006 byte into $2006

 4) Write data to $2007 4) Read data from $2007

 *** NOTE: Accessing VRAM should only be performed during VBlank.

 Attempts to access VRAM outside of VBlank will usually result in

 a mid-HBlank access (See Section 4, Subsection L). This is probably

 not what you want.

 Waiting for VBlank is quite simple. In most cases, you will simply

 want to wait for it to start. In other cases (such as for a delay),

 waiting for VBlank to start _AND_ end is useful.

 VBlank Start VBlank Start & End

 ------------ ------------------

 L1 LDA $2002 L1 LDA $2002

 BPL L1 BPL L1

 L2 LDA $2002

 BMI L2

 Reading $2002 will result in all bits being returned; however, Bit

 #7 (VBlank) will be reset to 0 after the read is performed. Many

 Squaresoft games use this method to reset the status of VBlank, so

 that they may do mid-HBlank updates.

 The actual on-screen palette used by the NES, as stated prior, is not

 RGB. However, a near-exact replica can be found in common NES emulators

 today. Contact the appropriate authors of these emulators to obtain

 a valid RGB palette.

 D. Notes

 None.

+---------------+

| 11. Emulation |

+---------------+

 A. General Information

 If you're going to be programming an emulator in C or C++, please be

 familiar with pointers. Being familiar with pointers will help you

 out severely when it comes to handling mirroring and VRAM addressing.

 For you assembly buffs out there, obviously pointers are nothing more

 than indirect addressing -- it's easier to change a 32-bit value than

 to swap in and out an entire 64K of data.

 See Section 12, Subsection E for Mailing List information.

 B. CPU Notes

 The NES does not use a 65C02 (CMOS) CPU as rumored.

 The 6502 has a bug in opcode $6C (jump absolute indirect). The CPU does

 not correctly calculate the effective address if the low-byte is $FF.

 Example:

 $C000: 4F

 $C1FF: 00

 $C200: 23

 ..

 $D000: 6C FF C1 - JMP ($C1FF)

 Logically, this will jump to address $2300. However, due to the fact

 that the high-byte of the calculate address is *NOT* increased on a

 page-wrap, this will actually jump to $4F00.

 Ignore opcodes which are bad (or support the option of trapping bad

 opcodes or not). Some ROM images out there, such as "Adventures of

 Lolo" have bad opcodes in them, due to dirty connectors on the cart-

 ridge during the extraction process, or other reasons.

 C. PPU Notes

 The formulae to calculate the base address of a Name Table tile number

 is:

 (TILENUM * 16) + PATTERNTABLE

 Where TILENUM is the tile number in the Name Table, and PATTERNTABLE

 is the Pattern Table Address defined via register $2000.

 It's recommended that DOS programmers use what is known as "MODE-Q,"

 a 256x256x256 "tweaked" video mode, for writing their emulator. Try to

 avoid Mode-X modes, as they are non-chained, and result in painfully

 slow graphics. Chained modes (like MODE-13h) are linear, and work

 best for speedy graphics. Since the NES's resolution is 256x240, the

 aforementioned "MODE-Q" should meet all necessary requirements.

 Most emulators do not limit the number of sprites which can be displayed

 per scanline, while the actual NES will show flicker as a result of more

 than eight (8). {Put some more garbage here; it's early...}

 Emulators should _NOT_ mask out unused bits within registers; doing so

 may result in a cart not working.

 Some emulators choose to store 0 as the vertical scroll value of the

 background if a value >239 is written to $2005. I don't know if this

 method of implementation is "correct."

 D. APU Notes

 The following formulae can be used to obtain accurate playback of the

 pulse, triangle, and noise channel(s):

 Pulse1 = 111860.78 / ($4002 + ($4003 & 7))

 Pulse2 = 111860.78 / ($4006 + ($4007 & 7))

 Tri = 111860.78 / ($400A + ($400B & 7) / 2)

 Noise = 111860.78 / ($400E + ($400F & 7))

 Where the $400x values are actually taken from their respective

 registers.

 E. FAQ (Frequently Asked Questions)

 Not available.

+------------------------+

| 12. Reference Material |

+------------------------+

 A. CPU Information

 None.

 B. PPU Information

 None.

 C. APU Information

 None.

 D. MMC Information

 None.

 E. Mailing Lists

 There is a NES Development Mailing List in existence. Contact Mark Knibbs

 for more information. This list is for anyone who wishes to discuss tech-

 nical issues about the NES; it is not a list for picking up the latest

 and greatest information about NES emulators or what not.

